
(PUCSD) Page 1 of 28

Syllabus for M.C.A. (Under Science Faculty)/ M.Sc. (CS)/ M.Tech. (CS)

(w.e.f. Academic Year 2013-14)

1. All the degree programmes in the Department of Computer Science, University of Pune are full

time courses.

2. M.Sc. and M.Tech. degree programmes are of four semesters duration each, and the M.C.A.

degree programme is of six semesters.

3. Each course will be of 5 credits and each semester is of 5 such courses (This is not applicable for

Industrial training in the Vth semester of MCA degree programme).

4. Each regular student will normally appear for all the 25 credits of the respective semester.

5. A student who wishes to take admission to the second year should have obtained at least 25 credits

out of 50 credits of the First year. A student will obtain non-zero credits only on obtaining a pass

grade in a course.

6. The teacher would evaluate a student through interaction throughout the semester which would

include one or more of the following mechanisms: tests, quizzes, assignments, projects and any

other means which enables the teacher to get positive feedback about a student's abilities and

enhances the teaching-learning process.

7. A student will be considered to have “Completed” the Internship/Industrial Training upon the

submission of certificate of completion, duly signed and sealed, from the Organization where the

candidate worked during the Internship period. In case a student failed to submit the required

certificate of completion duly signed by mentor/Organization then the student will be considered

to have “Not Completed” the required internship/industrial training at the time of the declaration

of the result. And hence such student will have to undergo the complete training.

8. Completion of Degree Programme:

a) As soon as a student of M.Sc/M.Tech. degree programme obtains 100 credits, the student will

be deemed to have completed the requirements of the M.Sc. / M.Tech. degree programme.

Similarly, 150 credits are required for M.C.A. degree programme.

b) If a student has failed in a course then the said course will not be taken into account for

calculating GPA and overall grade. In fact, all the courses in which a student has passed will

be taken into account for calculating the GPA and overall grade.

c) The policies and procedures determined by the University of Pune will be followed for the

conduct of examinations and declaration of the result of a candidate.

(PUCSD) Page 2 of 28

First two semesters of the M.C.A., M.Sc. and M.Tech courses are same in content and prerequisite/co-

requisite requirements.

The Degree projects from M.Sc. (CSMSP) and M.Tech. (CSMTP) is distributed across 2 semesters (third

and fourth), each semester having 5 credits reserved for it.

Semester 1 (5 Credits Each Course)

• CS-101 Introduction to Programming

• CS-102 Computer Organization

• CS-103 Mathematical Foundations

• CS-104 Concrete Maths and Graph Theory

• CS-105 Database Management System

Semester 2 (5 Credits Each Course)

• CS-201 Numerical Methods

• CS-202 Data Structures

• CS-203 Low-level Programming

• CS-204 Operating Systems

• CS-205 Science of Programming

Semester 3 (MCA only)(5 Credits Each Course)

• CS-301 Design and Analysis of Algorithms

• CS-302 Theory of Computing

• CS-303 Computer Networks

• CS-304 Systems Programming

• CS-305 Elective *

Semester 4 (MCA Only) (5 Credits Each Course)

• CS-401 Computer Graphics

• CS-402 Modelling and Simulation

• CS-403 Operations Research

• CS-404 Software Engineering - I

• CS-405 Elective *

Semester 5 (MCA Only) (25 Credits)

• CSMCP: Full-time Industrial Training

Semester 6 (MCA Only) (5 Credits Each Course)

• CS-601 Programming Paradigms

• CS-602 Software Engineering – II

• CS-603 Software Comprehension

• CS-604 Elective *

• CS-605 Elective *

(PUCSD) Page 3 of 28

Semester 3 (M.Sc. only)(5 Credits Each Course)

• CS-301 Design and Analysis of Algorithms

• CS-302 Theory of Computing

• CS-303 Computer Networks

• CS-304 Systems Programming

• CS-MSP Degree Project

Semester 4 (M.Sc. Only) (5 Credits Each Course)

• CS-411 Software Engineering

• CS-601 Programming Paradigms

• CS-603 Software Comprehension

• CS-405 Elective *

• CS-MSP Degree Project

Semester 3 (M.Tech only) (5 Credits Each Course)

• CS-301 Design and Analysis of Algorithms

• CS-302 Theory of Computing

• CS-303 Computer Networks

• CS-304 Systems Programming

• CS-MTP Degree Project

Semester 4 (M.Tech Only) (5 Credits Each Course)

• CS-411 Software Engineering

• CS-601 Programming Paradigms

• CS-603 Software Comprehension

• CS-405 Elective *

• CS-MTP Degree Project

Elective Courses (offered in the last few years)

� Genetic Algorithms

� Object Oriented Modelling and Design

� Motivation and Emotion

� Artificial Intelligence

� Compiler Construction

� Advanced Algorithms

� Network Security

� System Administration

� Advanced Networks
� Program Analysis

� Distributed Systems
� Machine Learning

� Programming in Real World
� Information Security

� Grid Computing
� Enterprise Application Integration

� Information Audit and Security

� Data Mining

� Procedural Texture Generation and Shading

(PUCSD) Page 4 of 28

CS-101 - Introduction to Programming

Contents:

Two paradigms are used as vehicles to carry the ideas for this course : the functional and the

imperative.

 The Functional Paradigm:

The central issue here is to be able to use the computer as a high-level tool for problem solving.

The paradigm conveyed may be simply expressed as:

 A modern non-strict functional language with a polymorphic type system is the medium for

 this part. The currently used language is the internationally standardized language, Haskell.
 Important ideas that are to be covered include:

1. Standard Constructs
 Function and type definition, block structure.

 Guarded equations, pattern matching.
 Special syntax for lists, comprehension.

2. Standard Data Types
 Fluency is to be achieved in the standard data types: numbers, Boolean, character, tuple, list.

 List programs in an algebraic vein.
 Lists in the context of general collections sets, bags, lists, and tuples. (MF)

3. Calculus

 A direct way for denoting functions.

4. First-Class-ness

 All values are uniformly treated and conceptualized.

5. Higher Order Functions

Use of first class, higher order functions to capture large classes of computations in a simple way.

An understanding of the benefits that accrue modularity, flexibility, brevity, elegance.

6. Laziness

 The use of infinite data structures to separate control from action.

7. Type discipline

8. Polymorphism:

 The use of generic types to model and capture large classes of data structures by factorizing

 common patterns.

9. Inference:

 The types of expressions may be determined by simple examination of the program text.
 Understanding such rules.

10. User defined types:
 User defined types as

 a means to model
 a means to extend the language

 a means to understand the built in types in a uniform framework.

11. Concrete types:

Types are concrete. i.e. values that are read or written by the system correspond directly to the

abstractions that they represent. More specifically, unlike abstract types which are defined in terms

of admissible operations, concrete types are defined by directly specifying the set of possible

values.

12. Recursion

 Recursive definitions as:

 a means of looping indefinitely;

 a structural counterpart to recursive data type definition;

 a means to understand induction in a more general framework than just for natural numbers;

13. Operational Semantics

(PUCSD) Page 5 of 28

 Functional programs execute by rewriting.

 Calculus as a rewriting system

 Reduction, confluence, reasons for preferring normal order reduction.

14. Type Classes

 Values are to types as types are to classes. Only elementary ideas.

 The Imperative Paradigm:

 The imperative paradigm is smoothly introduced as follows:

Worlds The Timeless worlds World of Time

Domian Mathematics Programming

Syntax Expressions Statements

Semantics Values Objects

Explicit Data Structure Control Structure

Thinking with Input – Output relations State Change

Abstractions Functions Procedures

Relation Denote Programs Implement Functions

 In the following we spell out some of the points of how FP translates into Imp P. The examples

 may be analogized from say how one would teach assembly language to someone who

 understands structured programming.

15. Semantic relations

 The central relation is that imperative programming's denotational semantics is FP, FP's

 operational semantics is imperative programming.

16. Operational Thinking

 In FP data dependency implicitly determines sequencing whereas in Imp P it is done explicitly.

 Advantages and disadvantages of operational thinking.

17. Environment

In imperative programming there is a single implicit environment memory. In FP there are

multiple environments; which could be explicit to the point of first class-ness (the value of

variables bound in environments could be other environments). Use of environments to model
data abstraction, various object frameworks, module systems.

18. Semi Explicit Continuation
Explicit in the sense that goto labels can be dealt with first-classly (as in assembly), but not

explicit in the sense of capturing the entire future of a computation dynamic execution of a code
block may be 'concave'.

19. Recursion iteration equivalence
 General principles as well as scheme semantics of tail recursion.

20. Type Issues

 Monomorphic, polymorphic and latent typing: translating one into another.

21. Guile

 A variety of vehicles have been used for the imperative paradigm, e.g. Pascal, C, Java, Tcl. The

current choice is Scheme in the guile dialect because it gives a full support for the functional and

the imperative paradigm. In fact Guile has been chosen over C because the single data structure in

guile expressions is universal (aka XML) and thus imperative and functional thinking do not

quarrel with data structure issues.

Orthogonal kinds of abstractions, which are usually considered 'advanced', such as functional,

higher order functional, object-oriented, stream based, data driven, language extensions via eval,

via macros, via C can be easily demonstrated. In fact, once guile has been learnt, it is much faster

to pick up C in the subsequent semester.

(PUCSD) Page 6 of 28

 Note: In addition to being a system programming and general purpose language Guile is

 also a scripting, extension and database programming language because it is the flagship

 language for FSF (The free software foundation).

References:

• Introduction to Functional Programming, Bird and Wadler., Prentice Hall

• Algebra of Programs, Bird, Prentice Hall

• Structure and Interpretation of Computer Programs, Abelson and Sussman, MIT Press

• Scheme and the Art of Programming, Friedmann and Haynes, MIT Press

• Equations Models and Programs,, Thomas Myers, Prentice Hall

• Algorithms + Data Structures = Programs, N Wirth

• Functional Programming, Reade

• Programming from First Principles, Bornat, Prentice Hall

• Discrete Math with a computer, Hall and Donnell, Springer Verlag

• Guile Reference Manual, www.gnu.org

(PUCSD) Page 7 of 28

CS-102 Computer Organization

Contents:

1. From a calculator to a stored-program computer:

Internal structure of a calculator that leads to this functionality. Machine language and programs

writing a sequence of instructions to evaluate arithmetic expressions. Interpreting the computer’s

behavior when instructions are carried out: the fetch- decode-execute cycle as the basic or atomic

unit of a computer’s function. Control unit: that performs the fetch-decode-execute cycle.

2. Parts of a computer:

Processor (CPU), memory subsystem, peripheral subsystem. The memory interface: memory

subsystem minus the actual memory. Ditto with the peripheral interface. Parts of these interfaces
integrated with the processor, and the remainder contained in the chip-set that supplements the

processor. Two main parts of the processor apart from these interfaces: data-path and control
(which supervises the data-path) An important aim of the CO course is to understand the internals

of these parts, and the interactions between them.

3. Instruction set formats:

 Three-address and one-address instructions and the corresponding data-path architectures, namely,
general-purpose register architecture (the classic RISC) and accumulator architecture. Zero-

address instructions and the stack architecture. Two- address instructions, e.g., in the Pentium.

4. Introductory Machine:

Modern computer design, dating back to the 1980’s, marks a radical shift from the traditional

variety. The new style has given rise to reduced instruction set computers (RISC), as opposed to

the older complex instruction set computers (CISC). The MIPS R, arguably the classic RISC

machine,

5. Basic Electronics:

Just those concepts needed to understand CO: combinational functions and their implementation

with gates and with ROM’s; edge-triggered D-flip-flops and sequential circuits; Implementation of

data-path and control, using the basic ideas developed so far.

6. Memory hierarchy:

Performance tradeoffs: fast, small, expensive memories (static RAM); slower, larger, inexpensive

memories (DRAM); very slow, very large and very cheap memories (magnetic and optical disks).
Ideal memory: fast, inexpensive, unbounded size. Ways of creating illusions or approximations of

ideal memory. On-chip and off-chip cache memories, redundant arrays of independent disks
 (RAID)

7. Pipelining:
Improving the performance of a computer and increasing the usage of its subsystems by executing

several instructions simultaneously. Analogy to assembly line manufacture of cars. Influence of
instruction set design on ease of pipelining. Difficulties with pipelining: structural, data and

branch hazards. Branch prediction

8. Peripherals:

 Interconnecting peripherals with memory and processor.

References:

• Computer Organization and Design, Patterson and Hennessey

• Computer Structures, Ward and Halstead

• Digital Design: Principles and Practices, Wakerley

(PUCSD) Page 8 of 28

CS-103 Mathematical Foundations

Contents:

1. Logic:

Propositional Calculus: Alternative styles: Boolean Algebra, truth tables, equational, deduction,
Formal systems, Syntax and semantics, Proof theory and Model theory, onsistency and

Completeness of different systems.
2. Self-reference, paradoxes, Gödel’s theorem Alternative Logics e.g. modal, dynamic, intuitionistic,

situational Applications: Prolog, Program Verification

3. Binding Constructs:

 Abstraction of lambda, for all, program function etc. Free and bound variables, substitution.

 Common laws.

4. Set Theory:

 Definitions, proofs, notations, building models, Applications: Z, Abrial's machines

5. Well formed formulae:

 Ordinary definition, refinement to types, necessity and limitation of computable type checking.

6. Category Theory:

 Problems with Set theory constructive, conceptual and type and their categorical solution

 Applications: functional programming equivalents of categorical results

7. Relations:

3 alternative views of foundations of relations: as Cartesian products, as Boolean
function(predicates), as power set functions 3 basic types - equivalences, orders, functions -

properties and applications in databases

8. Calculus (Closely integrated with IP)
 Explicit and Implicit definitions. The 3 ingredients of function definition: naming,

 abstraction/quantification, property/predicate.

Mathematically - separates the 3 Computationally - delays by transforming computation into recopies

Philosophically – enriches the programmer's world by moving programs from syntax to first-class

semantics

9. Algebraic Structures:
Development: Logic, Set Theory, Cartesian Products, Relations, Functions, Groupoids, Groups, Many

sorted Algebras, Lattice Theory Applications to cryptography, denotational semantics, cryptography

References:

• Logic for CS by Gallier

• Discrete Math by Tremblay Manohar

• Discrete Math by Stanat

• Laws of Logical Calculi by Morgan

• Category Theory tutorial by Hoare

• Category Theory by Burstall and Rydheard

• Computer modelling of mathematical reasoning by Bundy

• Shape of mathematical reasoning by Gasteren

• Predicate Calculus and Program Semantics by Dijkstra

• Algebra of Programming by Richard Bird

• Functional Programming with Bananas, Lenses and Barbed Wire by Fokkinga.

• A Gentle Introduction to Category Theory the calculational approach by Fokkinga

• A Logical Approach to Discrete Math by Gries and Schneider

• Practical Foundations of Mathematics by Paul Taylor

• Conceptual Mathematics by Lawvere

• Practical Foundations of Mathematics by Taylor

• Logic in Computer Science: Modelling and Reasoning about Systems, by Michael Huth , Mark

Ryan Cambridge Univeristy Press

(PUCSD) Page 9 of 28

CS-104 Concrete Math and Graph Theory

Contents:

Graph Theory

1. Graphs:
Definition and examples of graphs, Incidence and degree, Handshaking lemma, Isomorphism,

Sub-graphs, Weighted Graphs, Eulerian Graphs, Hamiltonian Graphs, Walks, Paths and Circuits,
Connectedness algorithm, Shortest Path Algorithm, Fleury's Algorithm, Chinese Postman

problem, Traveling Salesman problem

2. Trees:

Definition and properties of trees, Pendent vertices, centre of a tree, Rooted and binary tree,

spanning trees, minimum spanning tree algorithms, Fundamental circuits, cutsets and cut vertices,

fundamental cutsets, connectivity and separativity, max-flow min-cut theorem

3. Planar Graphs:

 Combinational and geometric duals, Kuratowski's graphs

 Detection of planarity, Thickness and crossings

4. Matrix Representation of Graphs:

 Incidence, Adjacency Matrices and their properties

5. Coloring:

 Chromatic Number, Chromatic Polynomial, the six and five color theorems, the four color

 theorem

6. Directed Graphs:

 Types of digraphs, directed paths and connectedness, Euler digraphs, Directed trees,
 Arborescence, Tournaments, Acyclic digraphs and decyclication

7. Enumeration of Graphs:
 Counting of labeled and unlabeled trees, Polya's theorem, Graph enumeration with Polya's

 theorem

 Concrete Mathematics

8. Sums:
 Sums and recurrences, Manipulation of sums, Multiple Sums, General methods of summation

9. Integer Functions:

 Floors and ceilings, Floor/Ceiling applications, Floor/Ceiling recurrences, Floor/Ceiling sum

10. Binomial Coefficients:

 Basic Identities, Applications, Generating functions for binomial coefficients

11. Generating Functions:

 Basic maneuvers, Solving recurrences, Convolutions, Exponential generating functions

12. Asymptotics:

 O notation, O manipulation, Bootstrapping, Trading tails

References

• Graph Theory with Applications, Bondy, J. A. & U. S. R. Murty [1976], MacMillan

• Graph Theory with Applications to Engineering and Computer Science, Deo, Narsingh [1974],
Prentice Hall

• Concrete Mathematics, A Foundation for Computer Science, Graham, R. M., D. E., Knuth & O.
Patashnik [1989], Addison Wesley

• Notes on Introductory Combinatorics, Polya, G. R. E. Tarjan & D. R. Woods [1983], BirkHauser

• Graph, Networks and Algorithms, Swamy, M. N. S. & K. Tulsiram [1981], John Willey

(PUCSD) Page 10 of 28

CS-105 Database Management System

Contents:

1. DBMS objectives and architectures

2. Data Models

 Conceptual model, ER model, object oriented model, UML Logical data model,
 Relational, object oriented, object relational

3. Physical data models
Clustered, unclustered files, indices(sparse and dense), B+ tree, join indices, hash and inverte files,

grid files, bulk loading, external sort, time complexities and file selection criteria.

4. Relational database design

 Schema design, Normalization theory, functional dependencies, higher normal forms, integrity

 rules, Relational operators

5. Object oriented database design

Objects, methods, query languages, implementations, Comparison with Relational systems, Object

orientation in relational database systems, Object support in current relational database systems,

complex object model, implementation techniques

6. Mapping mechanism

 conceptual to logical schema, Key issues related to for physical schema mapping

7. DBMS concepts

 ACID Property, Concurrency control, Recovery mechanisms, case study Integrity,

 Views & Security, Integrity constraints, views management, data security

8. Query processing, Query optimization -

 Heuristic and rule based optimizers, cost estimates, Transaction Management

9. Case Study

Case study for Understanding the transaction processing Concurrency and recovery protocols,
query processing and optimization mechanisms through appropriate queries in SQL and PLSQL

using one or more of Oracle, Postgresql, MySQL, some other Open Source Database Package

10. Web based data model -

 XML, DTD, query languages

11. Advanced topics

Other database systems, distributed, parallel and memory resident, temporal and spatial databases.

Introduction to data warehousing, On-Line Analytical Processing, Data Mining. Bench marking

related to DBMS packages, database administration. Introduction to Big Data. Recent advances in

Database Management

References:

• Database System Concepts, Silberschatz, Korth and Sudershan, McGraw Hill

• Database Management Systems, Raghu Ramakrishnan, Johannes Gehrke

• Relational Database Index Design and the Optimizers by Tapio Lahdenm, Michael Leach, John
Wiley

• Principles of Database Systems Vol. I & Vol II, J. D. Ullman, Rockville, MD: Computer Science
Press,

(PUCSD) Page 11 of 28

CS-201 Numerical Methods

Contents:
1. Matrix Algebra

2. Numerical Solution of Linear Equations. Direct Methods and Iterative Methods. Eigen value and
Eigen vector calculation.

3. Solutions of Systems of Nonlinear Equations
4. Iteration : Convergence of iteration, Error, Accelerating Convergence, Aitkin's Method, Quadratic

Convergence, Newton's Method
5. Iteration for system of equations: Contraction Mapping, Lipschitz Condition, Quadratic

Convergence, Newton's Methods, Bairstow's Method.

6. Difference Equations : Particular solution of Homogeneous Equation of order two, General

Solution, Linear Dependence, Non Homogeneous Equation of order two, Linear Difference

Equation of Order N, System of Linearly independent Solutions.

7. Propagation of roundoff error

8. Interpolation and approximation

Interpolating Polynomials, Existence, Error and Convergence of Interpolating. Polynomial

Construction of Interpolating Polynomials from ordinates and by using differences.

9. Introduction to Numerical Solutions of Differential Equations

References:

• Numerical Methods for Scientists and Engineers, Chapra, TMH

• Elements of Numerical Analysis, Peter Henrici, John Wiley & Sons.

• Numerical Linear Algebra, Leslie Fox, Oxford University Press.

(PUCSD) Page 12 of 28

CS-202 Data Structures

Prerequisite: (Student should have undergone the prerequisite course)
 CS-101(Introduction to Programming)

Contents:

Course Overview:

 Algebraic View Algorithmic View

Data Data Structures, Mathematical Definitions,
Laws, Manipulations, MF relations

Storage Structures, Engineering
Considerations related to C.O., L.L.P.

Code Recursive and closed form program

specification. May be implementable in a high

level language like gofer or may not be

implementable directly. The intrinsic value of

specification apart from programs.

Explicit control through built in control

structures like sequencing, if, while

Engineering efficient implementation of

correct specifications

 The course is organized according to the philosophy in the table below. The case studies/examples

 include but need not be limited to

1. Lists:

 Various types of representations.
 Applications: symbol tables, polynomials, OS task queues etc

2. Trees:

 Search, Balanced, Red Black, Expression, and Hash Tables

 Applications: Parsers and Parser generators, interpreters, syntax extenders

3. Disciplines:

 Stack, queue etc and uses

4. Sorting and Searching:

 Specification and multiple refinements to alternative algorithms

5. Polymorphic structures:

 Implementations (links with PP course)

6. Complexity:

 Space time complexity corresponds to element reduction counts. Solving simple recurrences.

Course Organization:

 Algebraic World Algorithmic World

Correctness

Bird Laws, Category Theory Refinement, Predicates

Transformation Via Morgan Refinement

ADTs and Views

• Formulation as

• recursive data types

• Data structure

• invariants

• Principles of

• interface design

• Algebraic Laws

• C storage

• Representation

• Invariants

• Addressing Semantics

• Use of struct, union and

• other assorted C stuff

• Maximizing abstraction by
macros, enums etc

(PUCSD) Page 13 of 28

Mapping

Via transforms and coupling invariants

Code

• Pattern Matching based

recursive definitions

• Exhaustive set of disjoint
patterns correspond to total

functions

• Correspond to runtime bug free

programs

• Recursive Code structures

follow from recursive data

structures

• Refinement of recursive
definitions into iterative

algorithms

• Techniques (Bentley) for

improving algorithms e.g.

sentinel, double pointers, loop

condition reduction, strength

reduction etc.

Continuations

• Control as Data

• Co routines vs. subroutines

• General framework for escape
procedures, error handling

• Loops

• Functions

• Stack based software architecture

Error Policy

Types

• Patterns

• Laws

• Deliberate Partiality

Predicate Transformer Semantics for

control

Modules

Category Theory

Files, make

References:

• Data Structures and Algorithms, Aho, Hopcroft and Ullman, Addison Wesley Inc.

• Data Structures, Kruse, Prentice Hall

• Programming from Specifications, Carroll Morgan, Prentice Hall

• Algebra of Programs, Bird, Prentice Hall

• Programming Perls, Writing Efficient Programs, John Bentley, Prentice Hall

• Structure and Interpretation of Computer Programs, Abelson Sussmann, MIT Press

• Functional Programming Henderson, Prentice Hall

• The Art of Programming Vol. 1. & Vol. 3, D. E. Knuth, Addison Wesley Inc

(PUCSD) Page 14 of 28

CS-203 Low-Level Programming

Prerequisite: (Student should have undergone the prerequisite course)
 CS-102(Computer Organization)

Contents:

1. C Language Basics

2. Assembly Language structure, syntax, macros

3. Use of linker, librarian, object editor(s), debugger

4. C Assembly Interfacing coding conventions, translations of arrays, structs, call return sequences.
Mixed code.

5. 8086 architecture going up to P4. Survey of Intel architecture history
6. Inline Assembly, Floating point operations

7. Machine language programming: Assembling and disassembling, clock cycle counting, instruction
length calculation. Philosophy and history of instruction format choices.

 Combinatorial considerations and limitations.
8. I/O Classification: Memory mapped vs. IP mapped. Polled, Interrupt, DMA

9. Interrupts: h/w and s/w. ISRs. Assembly and C. Minimization and handling of non determinism
Separation of binding times: Hard-coding of chip, board, OS, system s/w, user levels

10. OS use: system call interface

11. OS implementation: Start up scripts, Basics of protected mode and device drivers

12. Chip Level Programming

References:

• Professional Assembly Language, Richard Blum, Wrox

• Guide to Assembly Language Programming, S P Dandamudi, Springer

• Linux Device Drivers, 3rd Edition By Rubini, Orielly

• Art of Assembly, Randy Hyde

• Intel Manuals

• OS, chip manuals

• Programming, Kernighan and Ritchie

(PUCSD) Page 15 of 28

CS-204 Operating Systems

Prerequisite: (Student should have undergone the prerequisite course)
 CS-101(Introduction to Programming) CS-102(Computer Organization)

Contents:
1. Simple computer systems made up of a single processor and single core memory spaces and their

management strategies.
2. Processes as programs with interpolation environments. Multiprocessing without and with IPC.

Synchronization problems and their solutions for simple computer systems.
3. Memory management: segmentation, swapping, virtual memory and paging. Bootstrapping issues.

Protection mechanisms.

4. Abstract I/O devices in Operating Systems. Notions of interrupt handlers and device drivers.

Virtual and physical devices and their management.

5. Introduction to Distributed Operating Systems. Architecture designs for computer systems with

multiple processors, memories and communication networks. Clocking problem and Lamport's

solution.

6. Illustrative implementation of bootstrap code, file systems, memory management policies etc.

References:

• A. S. Tanenbaum, Modern Operating Systems, Pearson Education

• Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating Systems Concepts, Wiley

• Nutt, Operating System, Pearson Education

• A. S. Tanenbaum, Distributed Operating Systems, Prentice Hall

• M. Singhal & N. Shivaratri, Advanced Concepts in Operating Systems, McGraw Hill

• Understanding the Linux Kernel, 2nd Edition By Daniel P. Bovet, Oreilly

• The Design of Unix Operating System Maurice Bach, Pearson

(PUCSD) Page 16 of 28

CS-205 Science of Programming

Prerequisite: (Student should have undergone the prerequisite course)
 CS-103(Mathematical Foundations)

Contents:
1. Verification : verification of imperative programs as in Gries/Dijkstra.

2. Specific techniques: Invariant assertive method, sub-goal induction method.
3. Verification of pointer programs.

4. Function Program verification: Induction on data-types, infinite data structure induction
5. Specification : Use of 'Z' as a model theoretic language.

6. Clear as an example of a model axiomatic/categoric language.

7. Transformation/Refinement

8. Homomorphic transformations, refinement Calculus Theory & application of List/Functional

9. Calculus

10. Theory Logics of Programs

11. Hoare Logics, Dynamic Logic

12. Temporal Logic Application to OOP

References:

• Functional Programming, Henson, Blackwell scientific

• Science of Programming, Gries, Narosa

• Discipline of Programming, Dijkstra, Prentice Hall

• Method of Programming, Dijkstra & Feijen, Addison Wesley

• Specification Case Studies, Hayes, Prentice Hall

• Software Specification, Gehani & Mcgettrick, Addison Wesley

• Program Specifications & Transformations, Meertens, Prentice Hall

• Partial Evaluation and Mixed Computation, Ershov, Bjorner & Jones, North Holland.

• Programs from Specifications, Morgan, Prentice Hall

• Lectures of constructive functional programming, Bird, Lecture notes, PRG Oxford

• Introduction to the theory of lists, Bird, Lecture notes, PRG Oxford

• A calculus of functions for program derivation, Bird, Lecture notes, PRG Oxford

• Introduction to Formal Program verification, Mili, Van Nostrand Reinhold

• Logic in Computer Science: Modelling and Reasoning about Systems, by Michael Huth , Mark

Ryan Cambridge Univeristy Press

(PUCSD) Page 17 of 28

CS-301 Design and Analysis of Algorithms

Co-requisite: CS-104 Concrete Maths And Graph Theory

Contents:

1. String processing: Knuth-Morris-Pratt Algorithm, Boyer-Moore Algorithm, pattern Matching.
2. Graph Algorithms: DFS, BFS, Biconnectivity, all pairs shortest paths, strongly connected

components, network flow. Ford-Fulkerson Algorithm, Edge Saturation and Node Saturation
Algorithms, Maximum Matching on Graphs

3. Geometric Algorithms
4. Backtracking, Dynamic Programming, Branch & Bound, Greedy: Use of three paradigms for the

solution of problems like Knapsack problem, Travelling Salesman etc.

5. Lower Bound Theory

6. Sorting, Searching, Selection

7. Introduction to the theory of NP-Completeness: Non-Deterministic Algorithms, Cook's Theorem,

clique decision Problem, Node cover decision problem, chromatic number, directed Hamiltonian

cycle, travelling salesman problem, scheduling problems.

References:

• Introduction to Algorithms, Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein,

PHI

• Algorithms, Robert Sedgwick, Addison Wesley Publishing Company, 1988

• The Design and Analysis of Computer Algorithms, A. V. Aho, J. E. Hopcroft, J. D. Ullman,

Addison Weslay, Reading, Mass, 1974

• Algorithm Design: Foundations, Analysis, and Internet Examples, Michael T. Goodrich, Roberto

Tamassia, Wiley

• Computer Algorithms: Introduction to Design & Analysis, Sara Baase, Allen Van Gelder, Addison

Wesley Pub. Co.,

• Combinational Algorithms (Theory and Practice) , F. M. Reingold, J. Nivergelt and N. Deo,

Prentice Hall Inc., Englewood Cliffs, N. J., 1977

• Combinatorial Algorithms, T. C. Hu, Addison Wesley, 1982

(PUCSD) Page 18 of 28

CS - 302 Theory of Computing

Prerequisite: (Student should have undergone the prerequisite course)
 CS-103 (Mathematical Foundation)

Contents:

1. Low Power Formalisms Combinational Machines inadequacy
2. FSM as acceptor, generator, regular expressions and equivalence

3. PDA brief idea, relation between CFG's and programming languages (informal)
4. Full Power Mechanisms

 (i) Recursive functions

 (ii) Turing machines cost models for the RAM

 (iii)Post systems/Lambda Calculus/Markov algorithms

 (iv) (any one) Use must be stressed along with mutual equivalences.

Any of the (iii) should be done so as to give a theoretical backing to the practical notion of

'nonVon-Neumann' language.

5. Self References :

 Use mention distinctions, 'escape methods' for self referencing quines, self references in the

 expression domain, the formulation of the 'halting problem' and decidability in C and Scheme

6. Recursive Data :

Recursive, Enumerable sets, generators and recognizers formulated as recursive types in Haskell,
'S' expressions in Scheme.

7. Complexity Basic ideas measuring time usage, time hierarchies
 Deterministic and Nondeterministic computations.

8. Ability of a mechanism to solve a problem. Formalization of the problem. Church Turing thesis.
9. Universality

10. Equations in language spaces Operational approach Denotational approach

References:

• Introduction to the theory of computation, Sipser, Thompson Learning

• Introduction to Computer Theory, Cohen, Wiley

• Computability And Complexity From a Programming Perspective, Neil Deaton Jones, MIT Press

• Computation and Automata, Salomaa, CUP

• Switching and finite Automata Theory, Kohavi, Zvi, Tata McGrawHill

• Finite and Infinite Machines, Minsky, Prentice Hall

• Post Systems, Krishnamurthi E. V.

• Godel, Escher, Bach, Hoffstader, Vintage Books

• Introduction to Recursive Function theory, Cutland, CUP

• Handbook of TCS Vol A,B, Jan Van Leeuvven ed, Elsevier

(PUCSD) Page 19 of 28

CS-303 Computer Networks

Contents:
1. Network architecture, ISO-OSI Reference model

2. Network Topology:
3. Topology design problem, connectivity analysis, delay analysis, backbone design, and local access

network design.
4. Physical Layer, Transmission media, digital transmission, transmission & switching,

5. Integrated Services Digital Network.
6. Data Link Layer: Design issues, protocols, CRC

7. Network Layer: Design issues, routing algorithm, congestion control, Packet switched networks,

8. X.25 standards, ATM networks

9. Transport Layer: TCP, UDP, Design issues

10. Session Layer: Design issues, client server model, remote procedure calls

11. Local Area Networks, IEEE 802 standards for LAN (Ethernet, token ring, optical fiber, wireless)

12. Application layer environment

13. Application layer architecture, building applications with sockets, DNS, HTTP, SMTP, LDAP,

NFS, NIS, SNMP, WAP Mobile computing

14. Internet, extranet, Virtual Private Network (includes tunneling, internet work routing and

fragmentation)

15. Internet Security: Firewalls, SSL, Popular encryption protocols

References:

• Data and communications, ., W. Stallings, Prentice Hall,

• Computer networks: A systems approach, ., Peterson and Davie, Morgan Kaufman

• Computer Networks, ., A. S. Tanenbaum, Pearson Education

• UNIX Network Programming Volume 1 Stevens , Addison Wesley2003

• TCP/IP Illustrated Volume 1, 2, 3,Richard Stevens, Addison Wesley

(PUCSD) Page 20 of 28

CS-304 Systems Programming

Contents:
1. The four dimensions of a programming activity as the basis for systems programming: concept,

program generators (humans or other programs), sources and deliverables. For a variety of
concepts, a set of program generators generate a set of (possibly overlapping) sources and produce

a set of deliverables (executables, libraries, documentation).
2. Interpretation as the fundamental activity in Software. Interpreters and interpretation. Program

layout strategies on a Von Neumann machine (e.g. Pentium). Division of the final interpretation
goal into subtasks and establishing interface export by producer tool and import by consumer tool.

Compiler and Assembler translation phases

3. Linkers and Loaders

Linker as a layout specifying producer and loader as a layout specification consumer. Layout

specification strategies: fixed and variable (relocatable and self-relocatable). Layout calculations.

Dynamic linking and overlays. Executable format definitions. Object file format as the interface

between the compiler and the linker. Few Object file formats like MSDOS, Windows and ELF.

Object file manipulation utilities. Source files related system software. Syntax manipulation (lex

and yacc). Editors, version controllers. Version control on object and executable files (e.g. Version

support for modules in the Linux kernel).

4. Support tools:

Literate programming (weave, tangle), source browsers, documentation generators, make, GNU
auto-conf, CVS, bug reporting systems. IDEs for systematic use of system tools. Flow graphers,

Debuggers for analysis. Package builders, installers, package managers for deployment
5. The notion of binding time as instant of achieving the mapping between a symbol and a value.

Overlays and remote procedure call as memory space influenced between symbol and value.

References:

• Aho,Lam, Sethi, Ullman Compilers: Principles, Techniques and Tools, Pearson

• John Levine, Linkers and Loaders, http://www.iecc.com

• System Software: An Introduction to Systems Programming, Leland L. Beck Pearson Education
Hopcroft and Ullman, Introduction to Automata theory, Languages and Computation, Narosa

Publishing

CS-MSP Degree Project/CS-MTP Degree Project

The student is expected to work for a full academic year (at an average of 15 hours per week) on a project

assigned by the guide.

(PUCSD) Page 21 of 28

CS-401 Computer Graphics

Contents:
1. Introduction, Image Processing as Picture Analysis and Computer Graphics as Picture Synthesis,

Representative Uses of Computer Graphics, Classification of Applications.
2. Raster Graphics Features, raster algorithms including primitives like lines, circles, filling, clipping

in 2D, etc.
3. Geometric transformations in 2D for 2D object manipulation coordinate transformations and their

matrix representation, Postscript language to demonstrate these concepts.
4. The 3rd dimension, it's necessity and utility, transformations and modelling in 3D, geometric

modelling with an introduction to curves and surfaces for geometric design, including but not

restricted to Bezier, B’spline, Hermite representations of curves and surfaces

5. From 3D back to 2D projections, hidden surface elimination and the viewing pipeline. Achromatic

Light, Chromatic Color, Color Models for Raster Graphics, Reproducing Color, Using Color in

Computer Graphics

6. Rendering Techniques for Line Drawings, Rendering Techniques for Shaded Images, Aliasing and

Anti-aliasing, Illumination Models local models like Phong, CookTorrance and global models like

ray tracing and radiosity, shading detail like textures, their generation and mapping, bump

mapping and similar techniques.

7. Depending on time availability, one of volume rendering, modelling of natural objects,

introduction to 3D animation may be covered depending on student and instructor inclination

References:

• Computer Graphics: Principles and Practice, J. Foley, A.van Dam, S. Feiner, J.Hughes, Addison

Wesley Pub.,

• Computer Graphics, D. Hearn, M. P.Baker, Prentice Hall,

• Computer Graphics, F. S. Hill Jr., Macmillan Pub

• Curves and Surfaces for Computer Aided Geometric Design, ., G. Farin, Academic Press,

• Mathematical Elements for Computer Graphics, ., D. Rogers, McGraw Hill Pub., 1990

• The Mathematical Structure of Raster Graphics, E. Fiume, Academic Press, 1989

• Graphics Gems , Vol. 15, Academic Press

• The Rendering Equation, J. Kajiya, SIGGRAPH 1986, 143-150

(PUCSD) Page 22 of 28

CS-402 Modelling and Simulation

Contents:
1. Introduction to Systems modelling concepts, continuous and discrete formalisms

2. Framework for Simulation and Modeling, modelling formalisms and their simulators, discrete
time, continuous time, discrete event, process based.

3. Hybrid systems and their simulators
4. Review of basic probability, probability distributions, estimation, testing of hypotheses

5. Selecting input probability distributions, models of arrival processes
6. Random number generators, their evaluation, generating random variates from various

distributions.

7. Output analysis, transient behavior, steady state behavior of stochastic systems, computing

alternative systems, variance reduction techniques.

8. Verification and Validation

References:

• Discrete Event System Simulation, J. Banks, J. Carson, B. Nelson, D. Nicol, Prentice Hall Pub.,

• Simulation Modeling and AnalysisA. Law, W. Kelton, McGraw Hill Pub.,

• Simulation with Arena, W. Kelton, R. Sadowski, D. Sadowski, McGraw Hill Pub.,

• Theory of modeling and Simulation, B. Zeigler, H. Praehofer, T. Kim, Academic Press,

• Object Oriented Simulation with Hierarchical Modular Models, B. Zeigler, Academic Press,

• Reality Rules, Vol. I and Vol. II, J. Casti, John Wiley Pub.,

(PUCSD) Page 23 of 28

CS-403 Operations Research

Contents:
1. The nature of O.R., History, Meaning, Models, Principles Problem solving with mathematical

models, optimization and the OR process, descriptive vs. Simulation, exact vs. heuristic
techniques, deterministic vs. stochastic models.

2. Linear Programming, Introduction, Graphical Solution and Formulation of L.P. Models, Simplex
Method (Theory and Computational aspects), Revised Simplex, Duality Theory and applications

Dual Simplex method, Sensitivity analysis in L.P., Parametric Programming, Transportation,
assignment and least cost transportation, interior point methods: scaling techniques, log barrier

methods, dual and primal dual extensions

3. Introduction to game theory

4. Multi objective optimization and goal programming

5. Shortest paths, CPM project scheduling, longest path, dynamic programming models

6. Discrete optimization models: integer programming, assignment and matching problems, facility

location and network design models, scheduling and sequencing models

7. Nonlinear programming: unconstrained and constrained, gradient search, Newton's method,

8. Nelder-Mead technique, KuhnTucker optimality conditions. These topics should only be covered

only time permits.

9. Discrete Time processes: Introduction, Formal definitions, Steady state probabilities, first passage

and first return probabilities, Classification terminology, Transient processes, queuing theory
introduction, terminology and results for the most tractable models like M/M/1

10. Inventory Models (Deterministic): Introduction, The classical EOQ, sensitivity analysis, Nonzero
lead time, EOQ with shortages, Production of lot size model, EOQ with quantity discounts, EOQ

with discounts, Inventory models (Probabilistic): The newshoy problem : a single period model, a
lot size reorder point model

 References:

• Operations Research: An Introduction, H. Taha, Prentice’Hall, 2002

• Operations Research: Principles and Practice, A. Ravindran, D, Phillips, J Solberg, John Wiley

Pub, 1987

• Linear Programming and Extensions, George B. Dantzig, Mukund N. Thapa, Springer 1997

• Theory of Games and Economic Behavior, J. von Neumann, O. Morgenstern, John Wiley Pub.

1967

• Goal Programming: Methodology and Applications, M. Schniederjans, Kluwer Academic Pub,
1995

(PUCSD) Page 24 of 28

CS-404 Software Engineering – I

Contents:
1. Introduction, Need, Software life cycles

2. Overview of Requirements Engineering, Processes, the requirements document
3. System Specification

 Logic Sets and Types, Z specification structure
 Relations, Functions, Sequences

4. Structured System Analysis Design
 ER Diagrams, Data Flow Diagrams

5. Object Oriented Software Design using UML

6. Notations for Design

 A brief reintroduction to Object Oriented Concepts and an overview of the UML notation

 Characteristics of notations for design.

7. Requirements Analysis

User Requirements Gathering, Performing a Domain Analysis, Developing the Use Cases.

8. System Specification

 Design and Analysis using UML

 Class Diagrams

 ML Activity Diagrams, Task Analysis

 ML Interaction Diagrams
 ML Object Diagrams

 ML Deployment Diagrams, Collaboration diagrams, Data Flow Diagrams
9. SSAD Vs Object Oriented Design

10. CASE Tools
11. Forward Engineering and Reverse Engineering

12. Code Construction
 UML to Code, Code to UML to Code

References:

• Software Engineering A Beginner's Approach, Roger S. Pressman, McGraw Hill

• The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley,

• UML Distilled, Martin Fowler, Addison Wesley

• Introduction to the Personal Software Process, Watts S. Humphery, Addison Wesley,

• Using UML for Software Engineering, Pooley and Stevens, Addison Wesley,

• The Unified Modeling Language Users Guide, Grady Booch, James Rumbaugh and Ivar

Jacobdon, Addison Wesley,

• Software Engineering Peters, Wiley India

• Specification Case Study, Hayes, Prentice Hall

• Currie: The Essence of Z ISBN 013749839X, Prentice Hall

• UML Toolkit, Eriksson, John Wiley,

CS-MCP: Full-time Industrial Training

The students enrolled for MCA course have to undergo an industrial training/internship related to

Software Development for a minimum of 20 weeks duration in any Organization. The internship will be

considered to be completed upon the submission of certificate of completion, duly signed and sealed,

from the organization where the candidate worked during the internship period.

(PUCSD) Page 25 of 28

CS-601 Programming Paradigms

Contents:
1. GUI Programming

2. GUI Vs CUI
3. Event Driven Programming

4. Visual (Meta-GUI) Programming
5. Architecture of typical Application

6. Database Connectivity, codeless programming
7. OO Paradigm

8. Modularity

9. Data Abstraction

10. Classes and Objects

11. Inheritance and interfaces

12. Polymorphism\

13. Inner Classes

14. Use of AWT and Swing for GUIs

15. Applets (if time permits)

16. UML: Class Diagrams, Sequence Diagrams

17. UML to Java tools (ArgoUML)

18. HDL via Verilog or VHDL
19. Architectural behavioral and RT levels

20. Study of Waveforms
21. Differences between features used for testing and allowable in design

22. Notion of Scripting
23. Scripting via Perl/Guile/Python

References:

• Verilog HDL by S. Palnitker (Prentice Hall)

• Perl by Wall and Chistiansen (O'reilly)

• Core Java 2 Vol I fundamentals and Vol II Advanced features by Cay S. Horstmann and Gery

Cornell (Prentice Hall)

• Thinking in Java Vol 3 by Bruce Eckel

• Programming Python by Mark Lutz, (O'Reilly)

• Python Documentation at http://www.python.org

(PUCSD) Page 26 of 28

CS-602 Software Engineering - II

Prerequisites: (Student should have undergone the prerequisite course)
 CS-404 (Software Engineering – I)

Contents:

1. Concepts of software management, The software crisis, principles of software engineering,
programming in the small Vs programming in the large

2. Software methodologies/processes, The software life cycle, the waterfall model and variations,
introduction to evolutionary and prototyping approaches

3. Software measurement

4. Object-oriented requirements analysis and modelling: Requirements analysis, requirements

5. Solicitation, analysis tools, requirements definition, requirements specification, static and dynamic

specifications, requirements review. (just revisited)

6. Software architecture

7. Software design, Design for reuse, design for change, design notations, design evaluation and

validation

8. Implementation, Programming standards and procedures, modularity, data abstraction, static

analysis, unit testing, integration testing, regression testing, tools for testing, fault tolerance

9. User considerations, Human factors, usability, internationalization, user interface, documentation,

user manuals
10. Documentation, Documentation formats, tools

11. Project management, Relationship to life cycle, project planning, project control, project
organization, risk management, cost models, configuration management, version control, quality

assurance, metrics
12. Maintenance, The maintenance problem, the nature of maintenance, planning for maintenance

13. Configuration Management
14. Tools and environments for software engineering, role of programming paradigms, process

maturity
15. Introduction to Capability Maturity Model

 People Capability Maturity Model

 Software Acquisition Capability Maturity Model

 Systems Engineering Capability Maturity Model

16. IEEE software engineering standards

References:

• Software Engineering, ., Ian Sommerville, Addison Wesley,

 (Note : This is also the preferred textbook for the IEEE Software Engineering Certificate
 Program.)

• The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley,

• Introduction to the Team Software Process, Watts S. Humphrey, Addison Wesley,

• Software Engineering A Practitioner's Approach European Adaption, 5th Edn., Roger S. Pressman,

adapted by Darrel Ince, McGraw Hill,

• Software Engineering Theory and Practice, Shari Lawrence Pfleeger, Prentice Hall,

• Practical Software measurement, Bob Huges, McGraw Hill,

• Human Computer Interaction, ., Dix, Finlay, Abowd and Beale, Prentice Hall,

• Software Project Management, ., Bob Huges & Mike Cotterell, McGraw Hill,

(PUCSD) Page 27 of 28

CS-603 Software Comprehension

Motivation:
 It is estimated that the maintenance (including minor modifications, feature enhancements, etc.) of

 existing systems consume 50% to 80% of the resources in the total software budget. It is further
 estimated that around 50% or more time is spent on the task of software comprehension

 (understanding the program/code). While traditional software engineering methods focuses on
 increasing the productivity and quality of systems under development or being planned this course

 will address the complementary problem.
Objectives:

The broad objective of the course is:

The ability to read and comprehend large pieces of software in an organized manner, even in the

absence of adequate documentation.

 The achievement of the above goal will imply the following milestones:

• (Re)documentation: Creation or revision of system documentaion at the same level of abstraction

• Design Rediscovery: Construct the design using domain knowledge and other external
information where possible along with information extracted from the code to create a model of

the system at a higher level of abstraction (than the code).

• Restructuring(/design): Transformations in design at the same level of abstraction while

maintaining same level of functionality and semantics.

• Modification: Modify design for change in functionality (addition/deletion).

Contents:

1. Basic programmming elements, data dypes, control flow

2. Large projects: project organization, build process, configuration, revision control, coding

standards and conventions.

3. Code reading tools: Using existing tools like an editor, regular expression matching using grep,file

difference using diffi, compiler, code browsers, etc. and writing your own if none of the existing

do the desired task
4. Code analysis: Using (and writing) tools for graphing (control flow, data flow, dependence

analysis), profiling and testing.

All the above should be covered in the context of some (ideally one or at most two) large software
like Apache, Linux kernel, ArgoUML, libfftw, etc. In addition, it is expected that the software

chosen be changed across different offerings of the course. With reference to the above contents,
the coverage will reinforce and complement, where pertinent, material which has been addressed

in other courses.

References:

• The Practice of Programming, Kernighan B, Pike R, Prentice-Hall India 2005

• Working Effectively with Legacy Code, Feathers M, Prentice Hall 2004

• Refactoring: Improving the Design of Existing Code, Martin Fowler , Kent Beck , John Brant ,

William Opdyke , Don Roberts , Addison Wesley

(PUCSD) Page 28 of 28

CS-411 Software Engineering (M.Sc./M.Tech. only)

Contents:
1. Introduction, Need, Software life cycles

2. Overview of Requirements Engineering, Processes, the requirements document
3. System Specification

 Logic Sets and Types, Z specification structure
 Relations, Functions, Sequences

4. Structured System Analysis Design
 ER Diagrams, Data Flow Diagrams

5. Object Oriented Software Design using UML

6. Forward Engineering and Reverse Engineering

7. Code Construction

 UML to Code, Code to UML

 Z to Code

8. Concepts of software management, The software crisis, principles of software engineering,

programming in the small Vs programming in the large

9. Software methodologies/processes, The software life cycle, the waterfall model and variations,

introduction to evolutionary and prototyping approaches

10. Software measurement

11. Software architecture
12. Software design, Design for reuse, design for change, design notations, design evaluation and

validation
13. Implementation, Programming standards and procedures, modularity, data abstraction, static

analysis, unit testing, integration testing, regression testing, tools for testing, fault tolerance
14. User considerations, Human factors, usability, internationalization, user interface, documentation,

user manuals
15. Documentation, Documentation formats, tools

16. Project management, Relationship to life cycle, project planning, project control, project
organization, risk management, cost models, configuration management, version control, quality

assurance, metrics

17. Maintenance, The maintenance problem, the nature of maintenance, planning for maintenance

References:

• Software Engineering A Beginner's Approach, Roger S. Pressman, McGraw Hill

• Software Engineering, ., Ian Sommerville, Addison Wesley,

• The Engineering of Software, Dick Hamlet, Joe Maybee, Addison Wesley,

• UML Distilled, Martin Fowler, Addison Wesley

• Introduction to the Personal Software Process, Watts S. Humphery, Addison Wesley,

• Using UML for Software Engineering, Pooley and Stevens, Addison Wesley,

• The Unified Modeling Language Users Guide, Grady Booch, James Rumbaugh and Ivar

• Introduction to the Team Software Process, Watts S. Humphrey, Addison Wesley,

• Software Engineering A Practitioner's Approach European Adaption, 5th Edn., Roger S. Pressman,
adapted by Darrel Ince, McGraw Hill,

• Software Engineering Theory and Practice, Shari Lawrence Pfleeger, Prentice Hall,

• Practical Software measurement, Bob Huges, McGraw Hill,

• Human Computer Interaction, Dix, Finlay, Abowd and Beale, Prentice Hall,

• Software Project Management, Bob Huges & Mike Cotterell, McGraw Hill,

